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Summary.  We review a new truncation/recoupling method to obtain eigenvalues 
and eigenvectors of an F-mode vibrational Hamiltonian. In particular we focus 
on the block diagonalization aspects of  the method which are ideal for massive 
parallelization, and we demonstrate this using H202 as an example. We then 
present vibrational energies for non-rotating HO2 and HCN, which illustrate 
several key advantages of  this method. 
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I.  Introduction 

The existence and further development of  parallel computers promises to make 
a major impact in many areas of theoretical/computational chemistry. Indeed, 
the way in which new algorithms are developed will be strongly influenced by 
this computer architecture. In this paper we describe a new approach we have 
very recently developed for treating polyatomic vibrations which is ideally suited 
for massive parallel computation. 

Before we present this approach we need to remind the general reader of  the 
difficulties in doing "exact" calculations of  energies and wavefunctions for the 
vibrations of  a polyatomic molecule. First, recall that even for the simplest case 
of  a non-rotating molecule there are 3N - 6 coupled degrees of  freedom, where 
N is the number of  atoms. Thus, for triatomic and tetraatomic systems there are 
three and six degrees of  freedom, respectively. If  the vibrational wavefunction ~i 
is expanded in a direct-product of single-mode orthonormal basis functions: 

~/i = Z /'~i ,.L(1)(,~ (2) (3) (F) (gn F (qF), 1) " , 1 , 2 n  3...,,Fv',,, ~1 ) (~ , , 2  (q2)c/),,3 (q3)  . . . ( 

where F = 3 N -  6, then the eigenvalue problem: 

(I-I - E ) C  = 0 (2) 

can be enormous. To see that, recall that if the upper limits on the F-fold 
summation in Eq. (1) are n•, n~ . . . . .  n 'p ,  then, if there are no restrictions on 
the summations, the order of  the H matrix, No, is nT' × n~' × - • • × nT. A very 
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modest value of each upper limit is 10, and thus N o equals 10 F, i.e., exponential 
growth with F. This growth rate is clearly unacceptable for F > 3, that is, for 
tetraatomic and larger molecules. Even for triatomics, the number 10 may be too 
small for many interesting cases, e.g., isomerizations, highly excited large ampli- 
tude motions, bases for reactive scattering, etc. A value of 20 for the upper limit 
of each summation would imply an H matrix of order 8000. There are methods 
to deal with such large matrices for selected eigenvalues and eigenvectors, and we 
refer the reader to several recent reviews of them [ 1, 2]. Even these methods will 
eventually have difficulties for general F > 3 problems. 

Clearly, the problem is with the direct-product basis. There are general 
strategies which have recently been suggested to restrict the size of the number of 
terms in the basis [3, 4]; however, we don't  wish to review them here. We do note 
that a very promising alternative is to use a direct-product of a mixture of 
multimode and single-mode basis functions [5]. That is a very promising ap- 
proach and it is related in spirit to one we have recently considered [6] and which 
is the subject of this paper. 

The method we describe is a non-direct-product representation of the 
wavefunction that lends itself to an efficient truncation/recoupling scheme. In 
particular it is ideally suited for massive parallelization. Before we present the 
method, and illustrations, we note that our approach is similar in spirit to the 
recent work of Light and co-workers who apply a Discrete Variable Representa- 
tion (DVR) to triatomic vibrations [7, 8]. That method is also ideally suited for 
massive parallelization. 

To summarize the rest of the paper: the theory of the truncation/recoupling 
method is presented in the next section, several illustrations of the method are 
given in Sect. 3, and a summary constitutes Sect. 4. 

2 .  T r u n c a t i o n / r e c o o p l i n g  t h e o r y  

The H-matrix in the Heisenberg eigenvalue equation, Eq. (2), can be written as 

H =  

follows: 

- H1,1 H m  
H2a H2,2 

n d , 1  H d , 2  

• . . H 1 ,  d 

• . . H 2 ,  d 

• . .  I~Id, d 

that is a matrix of matrices. For the sake of concreteness we associate the 
submatrices Hda with two modes which we take to be modes ql and q2 in Eq. (1). 
The row vector d is an ordered set of integers referring to the remaining F - 2 
modes, i.e., 

d = ( n  3 / ~ 4 / ~ 5 "  ' ' n F ) -  

As usual, an element of H is given by 
F 

, (i,) (1) (2) H (1) (2) 

where H is the exact Hamiltonian operator. 
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Next we re-write H as: 

where 

ri0= 

H = H o + H 1 ,  

- H1,1 0 
0 Ha,~ 

0 0 Ha, a 

and 

H 1 

0 HI, 2 
H2,1 0 

Ha,1 Hal,2 

Hd, d 
H2,d 

A key step in the truncation/recoupling method is the diagonalization of H 0, 
which even though it may be an enormous matrix, can be accomplished fairly 
readily due to its block diagonal structure. Indeed, the task of  diagonalizing H0 
is ideally suited for massive parallelization. To make this clear, we digress from 
the truncation/recoupling method and focus on a simple example. 

H202 

An interesting system which lends itself to the above decomposition of  H is 
hydrogen peroxide. We associate the coordinates q~ and q2 with the symmetric 
and antisymmetric OH normal modes, and q3-q6 with the remaining normal 
modes. The harmonic frequencies of  these modes from a recent ab initio 
calculation [9] are given in Table 1. As seen, we have chosen the two high 
frequency OH stretches to be represented by the submatrices H,,.a. We now wish 
to determine the order of  H 0, N o, and the number of  blocks, Nb, in Ho, for 
several cases of  interest. Suppose we decide to include all states d = n3n4nsn 6 
such that the uncoupled harmonic excitation energies n3~o 3 + ?t4o) 4 + nse)5 +/'/6(.06 
are below a threshold value E~h. (The number of  states is equal to the number 
of  blocks Nb. ) Also, we assume that the order of H,,a is 400, which is a 
reasonable size to obtain high energy eigenvalues of  a two-mode Hamiltonian 
matrix. We have tabulated the number of  blocks and the order of  Ho (and H) for 
four values of Eth in Table 2. The order is clearly out of  the range by orders of 
magnitude for any computer. However, the number of  blocks in H 0 is well within 
the maximum number of  processors of  existing parallel computers, e.g., the 
CM-2 connection machine, which has a maximum of 65536 processors [10]. 
Thus, diagonalization of H0 which is equivalent to diagonalizing N b 400 x 400 
matrices can be done on existing parallel computers. 

We now continue with our brief description of  the truncation/recoupling 
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Table 1. Harmonic normal mode frequencies 
(in cm -1) of H202 a (using non-conventional 
notation) 

Table 2. The number of blocks N b in H0, 
and the order of Ho (and H), No, for }t202 
for four values of the threshold energy (in 
c m  - 1 )  e t h  

(D 1 (antisym OH str) 3820 
0) 2 (sym OH str) 3816 Eth Nb No 
0)3 (sym HOO bnd 1429 
o94 (antisym HOO bnd) 1328 15,000 1810 7.24 x 105 
0)5 (OO str) 887 20,000 6716 2.69 x 106 
0)6 (trosion) 383 25,000 17964 7.19 x 106 

30,000 39530 1.58 x 107 
a From Ref. [9] 

theory• The new two-mode "dressed" basis is obtained from diagonalization of 
H0, and is denoted z f (q l ,  q2). These dressed eigenfunctions are combined with 
the zero-order, single-mode ones to yield a new, non direct-product basis: 

~ ] ( q l ,  q 2 , .  qF) (3) (F) d 
' ' ,  = (~ n 3 (q3) " ' "  ~gn F (qY)Zj (q l ,  q2), 

in terms of  which the exact wavefunctions 7' i are expanded, i.e.: 

t[ti(ql, q2, . . q F )  = ~ i a • ,  a aj q ' i  ( q l ,  q2 . . . . .  q r  ). 
aj 

The terminology "dressed" to describe the two-mode basis seems appropriate 
since the two-mode Hamiltonian H is "dressed" by a given zero-order state 
~b~33)(q3) . . .  ~b(,F)(qF). A very important property of the ~d  (which can be seen by 
inspection) is that they form an orthonormal set of functions, i.e.: 

= 

The full Hamiltonian in the new F-mode basis has the following structure 

H t  

H2,1 Eo 

H} a H~,2 

• " "  H ~ / , d  " "  

• . .  H~,d " - -  

. . .  E o  d . . .  

where the diagonal blocks El,  E~ . . . .  Eo a, are diagonal matrices of the eigen- 
values of H0. In principle these blocks are the same order as the blocks in Ho. 
However, a major reduction in their order, and hence the overall order of H t can 
be made if basis functions 7J] with energies below a cutoff energy are used in the 
final re-coupling. For  this truncation of the basis to be effective, it is necessary 
that the zero-order energies Eo be close to the exact ones. An investigation of this 
is made below for two examples, HO2 and HCN. 

3 .  T r i a t o m i c  e x a m p l e s  

We consider two triatomic examples to illustrate some of the results we have 
obtained with the dressed state truncation/recoupling method. We use mass- 
scaled Jacobi coordinates, R~ and R2, which are the mass-scaled position vectors 
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of the atom with respect to the center of mass of the diatom, and the mass 
scalled diatom internuclear position vector. The quantity 7 is defined to be the 
angle between those vectors. 

In the applications below R~, 7, and R2 play the roles of ql, q2, and q3, 
respectively. The basis functions for these modes are eigenfunctions of reference 
Hamiltonians which are given by: 

h 2 9 2 
h (1~ = V(R1R °, 

2/, aR12 ~- 7°)' 

h (2~ = & j ~  + v(R 0, R o, 7), 

h 2 9 2 
h (3 )_  V(R O, R2, 

2ll 0R2 ~ + 7). 

where o o 70 R 1, R2, and are constants. 
The modes R1 and 7 are coupled, and the dressed Schr6dinger equation for 

the eigenfunctions Z} '3 (R1, cos 7) is: 

where 

H n  --  

( / t - ,  - E ~ ) z ? ( g ~ ,  ~) = o, 

t'i 2 9 2 
al l  •R 2 -~- <(t~(3)318(R1, R2)[~(33))J02 -~- <(~ (n33)1 ~/r(R1, R2, ~) [4) (n33) >, 

where B(R~, R2) is the inverse moment of inertia, j2 is the diatom angular 
momentum operator squared in a body-fixed frame, V(R1, R2, y) is the full 
potential, and q~3 3) is an eigenfunction of h (3). The eigenfunctions Q3(R~, cos y) 
are expanded in a direct-product of the eigenfunctions of h °> and h (2). 

We now consider two examples, H O  2 and HCN. 

HO~ 

As a first example, consider non-rotating H O  2 in mass-scaled Jacobi coordi- 
nates. R1 is the mass-scaled distance of H with respect to the center of mass of 
O2 and R2 is the mass-scaled 02 internuclear distance. The potential we used is 
the double-many-body-expansion of Verandas and Brandgo [11] fit to the ab 
inito calculations of Melius and Blint [12]. An equipotential contour diagram of 
the surface in physical coordinates (with Rz fixed) is shown in Fig. 1. Clearly, 
there is substantial RI-7 correlation. Interestingly though, we examined a 
contour plot in R1-R2 for fixed 7 and found very little correlation, except at 
energies above dissociation. This incicates that the choice of modes to couple, 
R 1 and Y, is the correct one. 

We calculated zero-order, dressed eigenvalues using a fairly large direct- 
product basis for the R1 and Y modes. The basis in these two modes was a 
direct product of stretching and bending functions which are eigenfunetions of 
h °) and h (2~. The reference configuration (R °, R2 °, 7 °) is the HO2 equilibrium 
position (which is bent, 7°= 45 deg). The dressed, zero-order eigenvalues were 
obtained by diagonalizing sixteen Hamiltonians, H% using a direct-product 
basis of order 440, which consisted of 20 stretching functions, and 22 bending 
functions. 
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~35 -~ 

R..oo (au) 

Fig. 1. Equipotential contour 
plot of the H O  2 potential 
(from Ref. [11]) in physical 
coordinates, i.e., the distance 
of H to the center of mass of 
02 and the angle 7 (see text) 
for a fixed O-O bond length. 
The contour values are in 
units of 1000 cm -1 

The truncation/recoupling calculations included all zero-order states with 
energies below 30,000 c m - L  This resulted in a final Hamiltonian matrix of  order 
932, and, based on convergence studies with smaller bases, the eigenvalues are 
accurate to within several cm -~ or less for energies up to roughly 14,000 cm -1. 
These calculations are for even parity states. Odd parity states were also 
calculated, separately. The splittings between the even and odd parity states and 
further details of  the calculations will be given elsewhere [13]. 

The results of  some of these calculations for states below the isomerization 
barrier (which is 12092 cm -~ above the H O  2 minimum) are given in Table 3. The 
vibrational states are denoted using conventional normal-mode notation 
(noo, nb, non), where the quantum numbers refer to the OO stretch, the bend, 
and the O H  stretch. As seen, the zero-order energies are quite close to the 
converged truncationirecoupling energies. Note, that the zero-order energies are 
not upper bounds to the exact ones, and so the negative differences should not 
be surprising. An important  aspect of  this comparison is that the accuracy of  the 
dressed zero-order energies remains constant as the energy increases. These 
results are quite similar to previous ones we have reported for HCO,  but in that 
case for all the bound states [6]. 

H C N  

We calculated truncation/recoupling energies for non-rotating H C N  up to 
15252 cm -1, using the potential surface of Murrell et al. [14]. 

In this example, R1 is the mass-scaled distance of H to the center of  mass of  
CN and R 2 is the mass-scaled CN internuclear distance. The two modes coupled 
are R1 and 7, as in HO2. As seen from an equipotential contour diagram in 
physical coordinates (with RcN fixed at its equilibrium value) shown in Fig. 2, 
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Table 3. Truncation/recoupling, Et/r, and zero-order dressed state, Eo, and their difference (in cm -1) 
for non-rotating HO2 

State Eo Et/r E o - E,/r 
(noonbnon) 

(0, 0, 0) 3051.2 3049.5 1.7 
(1, 0, 0) 4285.4 4277.3 8.1 
(0, 1, 0) 4878.2 4879.7 - 1.5 
(2, 0, 0) 5501.4 5486.8 14.6 
(0, 0, 1) 5989.6 5980.6 9.0 
(1, 1, 0) 6100.0 6092.7 7.3 
(0, 2, 0) 6651.9 6654.4 - 2 . 5  
(3, 0, 0) 6699.1 6678.4 20.7 
(2, 1, 0) 7226.0 7206.8 19.2 
(1, 0, 1) 7302.9 7287.1 15.8 
(0, 1, 1) 7765.4 7764.3 1.1 
(1, 2, 0) 7860.6 7850.7 9.9 
(4, 0, 0) 7879.6 7853.5 26.1 
(0, 3, 0) 8369.3 8372.8 -3 .5  
(2, 0, 1) 8444.8 8412.7 32.1 
(3, 1, 0) 8486.9 8464.2 22.7 
(0, 0, 2) 8850.1 8827.4 22.7 
(1, 1, 1) 8986.9 8971.1 15.8 
(5, 0, 0) 9047.8 9015.3 32.5 
(2, 2, 0) 9050.5 9030.7 19.8 
(0, 2, 1) 9477.8 9480.3 - 2 . 5  
(1, 3, 0) 9566.0 9552.6 13.4 
(3, 0, 1) 9645.8 9594.3 51.5 
(4, 1, 0) 9653.4 9630.5 22.9 
(0, 4, 0) 10029.6 10034.0 - 4 . 4  
(1, 0, 2) 10088.9 10048.7 40.2 

180 

135 

0 
90 

45 % 

l l , l l l l p l l l ,  j ,  

2 3 4 5 

R..c. (au) 

Fig. 2. Same as Fig. 1 but for 
HCN (from Ref. [14]), where 
RH_CN is the distance of H to 
the center of mass of CN 
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3.5 
y = O  ° 
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z Z5 
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1 ° 6  , , ' ' ~ , ' ~ ,  , ' ~ ' ' ~  ' ~ ' ' ~ ' ' ~ ' 1  ' ' ~ ' ' t ' ' '  

2 3 4 5 6 

R..c. (au) 

Fig. 3. Equipotential contour 
plot for HCN in terms of 
physical radial coordinates for 
the linear configuration. 
Contour values are in units of 
1000 em -] 

HC N has even more R1-]~ correlation than HO 2. The two minima, correspond- 
ing to linear HCN and linear HNC have quite different values of RH-cN. Also, 
there is considerable R I - R  2 correlation, as seen in Fig. 3. [In a separate study, 
we found that the R~-R2 correlation can be very effectively accounted for by a 
simple rotation of the (R1, R2) coordinates to new coordinates (Q1, Q2) [15].] 
Thus, we do not expect the zero-order dressed energies to be as accurate for 
HC N (using R 1 and R2) as they were for HO2 (and HCO). And, indeed, as seen 
in Table 4, that is the case. The differences are roughly a factor of 10 larger than 
in HO2. Even so, the truncation/recoupling results in this table, which used nine 
CN basis functions, are in excellent agreement with previous calculations of 
Ba6i6 and Light [ 16], (with a few exceptions for states involving CN excitation), 
and in very good agreement with previous calculations of Brunet et al. [ 17]. We 
note that the order of the final truncated H-matrix was 689, whereas the 
direct-product basis used to obtain the dressed eigenfunetions would have 
resulted in an H-matrix of  order 13,068. 

Finally, we note that truncation/recoupling calculations can be done with 
rotated R 1 and R: coordinates, and we anticipate that much more accurate 
zero-order energies would result. 

4. Conclusion 

A truncation/recoupling method to obtain eigenvalues and eigenvectors of large 
matrices has been reviewed. In this method a major step involves diagonalization 
of a very large, block diagonal, matrix. The blocks are of modest size, and thus 
this diagonalization is ideally suited for massive parallel computation. We 
described an example calculation of the vibrational energies of H202, where it 
was clearly shown that the conventional direct-product method would be pro- 
hibitive for existing, and future computers. However, the calculation should be 
quite feasible for machines such as the Connection Machine. 
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Table 4, Low energy dressed state and truncation/recoupled (Et/,) eigenvalues (in on] -1) for 
non-rotating HCN 

St~e Et/r g 0 Eo-Et /r  
(HCN) or[HNC] 

(0,0,0) 3483.3 3524.7 41.4 
(0, 2,0) 4901.5 4935.5 34.0 
(1, 0,0) 5580.3 5813.4 233.1 
(0, 4,0) 6289.7 6319.6 30.0 
(0,0,1) 6801.8 6716.1 -85.7 
(1, 2, 0) 6991.9 7201.3 209.4 
[0,0,0] 7291.2 7347.0 55.8 
(0, 6,0) 7644.3 7672.8 28.5 
(2, 0, 0) 7657.1 8079.8 422.7 
(0, 2, 1) 8190.2 8108.3 --81.9 
[0, 2, 0] 8234.2 8293.1 58.9 
(1, 4, O) 8374.0 8565.4 191.5 
(1, O, 1) 8884.9 8990.0 105.0 
(0, 8,0) 8960.8 8997.5 36.8 
(2, 2, O) 9061.8 9166.1 104.4 
[0, 4, ~ 9108.5 9444.8 336.3 
[1, O, O] 9321.3 9471.9 150.6 
(0, 4, 1) 9548.4 9545.5 --2.8 
(3,0, O) 9715.9 9798.9 83.1 
(1, 6,0) 9722.9 9864.1 141.2 
[0,6,0] 9810.6 9901.1 90.5 
(0,0,2) 10014.9 10264.9 250.1 
[0,8,0] 10132.5 10265.0 132.5 
(0, 10,0) 10233.6 10324.4 90.9 
[1, 2, 0] 10254.5 10366.8 112.4 
(1,2,1) 10267.0 10470.0 203.0 
(2,4,0) 10436.6 10704.5 268.0 
[0, 10,0] 10530.8 10788.7 257.9 
(0,6,1) 10872.9 10802.9 -70.0 
[0, 0, 1] 10923.8 10891.4 -32.4 
(2, 0, 1) 10951.2 11172.2 221.0 
[0,12,0] 11021.6 11203.4 181.8 
(1,8,0) 11034.3 11230.9 196.6 
(3, 2,0) 11113.0 11256.8 143.8 
[1,4,0] 11123.6 11328.1 204.5 
[2, 0,0] 11333.0 11489.7 156.8 
(0, 2, 2) 11373.0 11666.4 293.4 
(0,12, 0) 11454.7 11710.1 255.4 
[0, 14,0] 11576.9 11720.2 143.3 
(1,4,1) 11618.5 11813.0 194.5 
(4,0,0) 11760.6 11813.7 53.1 
(2,6,0) 11779.7 12027.1 247.5 
[0,2, 1] 11834.0 12073.8 239.8 
[1, 6 ,~  11842.3 12096.3 253,9 
(1, 0, 2) 12084.5 12106.9 22.4 
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Actual calculations of vibrational energies using the truncation/recoupling 
method were presented for HO2 and HCN. Although the method worked well 
for HCN we noted that the zero-order energies were less accurate than the 
corresponding ones for HO2. This was due to substantially more radial-radial 
(R1-R2) correlation in HCN than in H02. 
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